Forschung & Entwicklung

Wie Spiegel die Chemie und Physik beeinflussen können

Eine Theorie zum verstärkten Energietransfer von Molekülen über weite Distanzen hinweg eröffnet neue Wege im chemischen Design und in der ‘spukhaften Chemie’.

Chemische Reaktionen folgen üblicherweise etablierten Regeln. Der Heilige Gral der Chemie ist es, eben diese Regeln zu nutzen und zu kontrollieren, um wiederum diese Reaktionen zu steuern. Der jahrhundertealte alchemistische Traum, jedes Material willkürlich in ein begehrtes Produkt zu verwandeln, treibt auch heutzutage die chemischen und physikalischen Wissenschaften voran. Forscher haben nun in einer theoretischen Arbeit belegt, dass wir nicht an diese Paradigmen gebunden sind, sondern diese selbst grundlegend durch das kontrollierte Vakuum beeinflussen können.

Wissenschaftler der Theorieabteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) im Center für Free-Electron Laser Science (CFEL) in Hamburg haben mittels Computersimulationen aufgezeigt, wie der Transfer von Energie und Ladung zwischen Molekülen mit virtuellen Photonen kontrolliert und drastisch verstärkt werden kann. In der Physik ist das Nichts niemals wirklich nichts – Die Schlüsse der Quantenmechanik führen zur Existenz virtueller Teilchen für extrem kurze Zeitspannen. Dazu gehören unter anderem die quantisierten Bruchteile des Lichtes: virtuelle Photonen.

Der Einfluss dieser virtuellen Teilchen, die im klassischen Sinne nicht einmal existieren, fasziniert Wissenschaftler seit nunmehr einem Jahrhundert. Die Beschaffenheit des Vakuums, inklusive seiner Eigenschaften und seines Einflusses, kann durch seine Umgebung kontrolliert werden. Wenn wir zwei gewöhnliche Spiegel dicht aneinander setzen, kann so zum Beispiel der Verlauf einer chemischen Reaktion kontrolliert werden. Dies geschieht nicht etwa durch den Kontakt der Moleküle mit der Oberfläche der Spiegel, sondern lediglich dadurch, dass die Spiegel das Vakuum in eine bestimmte Form zwingen.

Experiment und Theorie beweisen, dass diese Effekte existieren und einen potenten Kontrollmechanismus darstellen. Das MPSD-Team um Christian Schäfer, Michael Ruggenthaler, Heiko Appel und Angel Rubio hat nun gezeigt, wie drastisch sich die Paradigmen der Chemie im kontrollierten Vakuum beeinflussen lassen. Die Photonen agieren als Kleber zwischen den Molekülen und ermöglichen einen extrem effizienten Energie- und Ladungstransfer über große Distanzen hinweg. Die Kontrolle des Vakuums ermöglicht somit die Steuerung chemischer Reaktionen, führt zu der hocheffizienten Kommunikation zwischen den Teilchen über weite Entfernungen (‚spukhafte Wechselwirkungen‘) und bestimmt ihre Positionen – alles durch die Anpassung einfacher Faktoren, wie der Distanz zwischen zwei Spiegeln. Der Kniff ist dabei, dass das kontrollierte Vakuum zu neuen Zuständen führt, welche mehr als die Summe ihrer Einzelteile, Licht und Materie (Polaritonen), darstellen. Selbst weit voneinander getrennte Moleküle sind so selbst über lange Reichweiten durch den effizienten Lichtcharakter verbunden – wie zwei Gesprächspartner, die mit Lichtsignalen kommunizieren.

Der Direktor der Theorieabteilung am MPSD, Angel Rubio, erklärt: „Mit Experimenten und Theorie fügen wir unserem modernen Verständnis des Material- und Reaktionsdesigns in diesem Feld neue Facetten hinzu. So eröffnen sich hocheffiziente Methoden für die Herausforderungen unserer Zeit, wie zum Beispiel der Energiewandel und die Energiespeicherung. Dieser neuartige Ansatz hat großes Potenzial, kann auf andere entfernte Komponenten wie zweidimensionale Materialien oder Festkörper ausgeweitet werden und verspricht neue technologische Möglichkeiten für die Zukunft.“

Ihre Arbeit könnte zu einer fundamentalen Anpassung der Leitlinien chemischer Reaktionen führen und große Fortschritte im Bereich der chemischen Kontrolle durch störungsfreie Methoden bewirken.

von mg

Originalveröffentlichung:

[Christian Schäfer, Michael Ruggenthaler, Heiko Appel und Angel Rubio, Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry, Proceedings of the National Academy of Sciences (PNAS), Februar 2019, 201814178; DOI: 10.1073/pnas.1814178116]

www.mpsd.mpg.de

© photonik.de 2019 - Alle Rechte vorbehalten