Forschung & Entwicklung

Ultraschnelles Mikroskop für die Quantenwelt

Ein Mikroskop für die schnellen Prozesse in der Quantenwelt erlaubt es, die Bewegungen von Elektronen bis auf ein Atom genau zu verfolgen. Dies könnte hilfreiche Erkenntnisse etwa für die Entwicklung extrem schneller und kleiner elektronischer Komponenten liefern.

Was etwa in den immer leistungsfähigeren Bauteilen von Computern oder Smartphones passiert, läuft nicht nur extrem schnell ab, sondern auch auf immer kleinerem Raum. Um diese Prozesse zu analysieren und etwa Transistoren zu optimieren, würden Filme der Elektronen sehr helfen. Dafür benötigen Forscher eine Hochgeschwindigkeitskamera, die jedes einzelne Bild eines solchen Elektronenfilms nur für einige hundert Attosekunden belichtet.

Bislang liefert eine Attosekundenaufnahme aber nur den Schnappschuss eines Elektrons vor quasi verwischtem Hintergrund. Dank der Arbeit von Klaus Kern, Direktor am Max-Planck-Institut für Festkörperforschung, und Manish Garg, Wissenschaftler in seiner Abteilung, können Forscher nun aber auch auf ein Atom genau erkennen, wo sich das gefilmte Elektron befindet.

Die beiden Physiker setzen dabei auf ultrakurze Laserblitze und ein Rastertunnelmikroskop. Letzteres erreicht eine atomgenaue Auflösung, weil es eine Oberfläche mit einer Spitze abtastet, die bestenfalls selbst nur aus einem Atom besteht. Ein Rastertunnelmikroskop erlaubte bislang keine Zeitauflösung, die ausreicht, um Elektronen zu verfolgen.

„Indem wir ein Rastertunnelmikroskop mit ultraschnellen Pulsen kombinieren, haben wir auf bequeme Weise die Vorteile der beiden Methoden genutzt, um ihre jeweiligen Nachteile auszugleichen“ sagt Manish Garg. Mit den extrem kurzen Lichtblitzen feuern die Forscher auf die atomgenau positionierte Mikroskopspitze und lösen so den Tunnelprozess aus. Die Hochgeschwindigkeitskamera für die Quantenwelt erreicht auf diese Weise jetzt auch HD-Auflösung.

Mit der neuen Technik können Physiker nun auf einige hundert Attosekunden und ein Atom genau messen, wann sich Elektronen wo befinden. Zum Beispiel in Molekülen, aus denen ein energiereicher Lichtblitz ein Elektron herauskatapultiert hat, sodass sich die verbleibenden negativen Ladungsträger neu arrangieren und das Molekül möglicherweise eine chemische Reaktion mit einem anderen Molekül eingeht. „Elektronen in Molekülen live filmen zu können, und zwar in ihrer natürlichen örtlichen und zeitlichen Größenordnung, ist entscheidend, um beispielsweise die chemische Reaktivität und die Umwandlung von Lichtenergie in geladenen Teilchen wie etwa Elektronen oder Ionen zu verstehen“, sagt Klaus Kern.

Außerdem ermöglicht es die Technik nicht nur, die Wege von Elektronen durch Prozessoren und Chips der Zukunft zu verfolgen. Sie kann die Ladungsträger auch drastisch beschleunigen: „Elektronen schwingen in heutigen Computern mit einer Frequenz von einer Milliarde Hertz“, sagt Klaus Kern. „Mit ultrakurzen Lichtblitzen lässt sich ihre Frequenz möglicherweise auf eine Billiarde Hertz steigern.“ Damit könnten Forscher den Weg zur Lichtwellenelektronik, die millionenfach schneller ist als gängige Computer, freimachen. So filmt das ultraschnelle Mikroskop Vorgänge in der Quantenwelt zum einen und führt dabei zum anderen Regie, indem sie darin eingreift.

von mn

Originalveröffentlichung:

[M. Garg, K. Kern, Attosecond coherent manipulation of electrons in tunneling microscopy, Science (2020), DOI: 10.1126/science.aaz1098]

www.fkf.mpg.de

Firmeninformationen
© photonik.de 2020 - Alle Rechte vorbehalten