Forschung & Entwicklung

Stark lichtabsorbierendes und regelbares Material

Ein Sandwich aus zwei Lagen Molybdändisulfid ermöglicht die gesteuerte Absorption von Licht bei einer wählbaren Wellenlänge. Anwendungen als optisches Bauteil oder als Quelle für einzelne Photonen ist denkbar.

Neue zweidimensionale Materialien sind zurzeit ein wichtiges Forschungsthema weltweit. Besonders von Interesse sind dabei van-der-Waals-Heterostrukturen, die sich aus einzelnen Lagen unterschiedlicher Materialien zusammensetzen und durch van-der-Waals-Kräfte aneinanderhaften. Die Wechselwirkungen zwischen den unterschiedlichen Schichten können zu neuen Eigenschaften des Materials führen.

Es gibt bereits van-der-Waals-Strukturen, die bis zu 100 % des Lichts absorbieren. Einlagige Schichten aus Molybdändisulfid weisen ein solch hohes Absorptionsvermögen auf. Wenn das Licht absorbiert wird, verlässt ein Elektron seinen Platz im sogenannten Valenzband und hinterlässt dort ein positiv geladenes Loch. Das Elektron gelangt auf ein höheres Energieniveau, in das sogenannte Leitungsband, in dem es sich frei bewegen kann.

Das entstandene Loch und das Elektron ziehen sich durch die Coulombkraft gegenseitig an und es entstehen gebundene Elektronen-Loch-Paare, die auch bei Raumtemperatur stabil sind. Es ist jedoch nicht möglich, in dieser einlagigen Molybdändisulfidschicht zusätzlich einzustellen, welche Wellenlängen an Licht absorbiert werden. „Erst wenn zwei Lagen Molybdändisulfid verwendet werden, kommt die für Anwendungen wichtige Eigenschaft der Regulierbarkeit hinzu“, erklärt Professor Richard Warburton vom Departement Physik und Swiss Nanoscience Institute der Universität Basel.

Warburton und seinem Team ist es in enger Zusammenarbeit mit Forschern aus Frankreich gelungen, eine solche Struktur herzustellen. Die Physiker verwendeten eine zweilagige Schicht von Molybdändisulfid, die wie bei einem Sandwich unten und oben von einem Isolator und dem elektrischen Leiter Graphen umgeben ist.

„Wenn wir an die äußeren Graphenschichten dann eine Spannung anlegen, erzeugen wir ein elektrisches Feld, das die Absorptionseigenschaften der beiden Molybdändisulfidschichten beeinflusst“, erklärt Nadine Leisgang, Doktorandin im Warburton-Team. „Durch die Einstellung dieser angelegten Spannung können wir bestimmen, bei welchen Wellenlängen Elektronen-Loch-Paare in diesen Schichten gebildet werden.“

Diese Arbeiten können einen neuen Ansatz zur Entwicklung optoelektronischer Geräte wie Modulatoren liefern. Modulatoren dienen dazu, die Amplitude eines Signals gezielt zu verändern. Möglich erscheint auch die Nutzung als Quelle für einzelne Photonen, die in den Quantentechnologien eine wichtige Rolle spielen könnte.

von mn

Originalveröffentlichung:

[N. Leisgang et al., Giant Stark splitting of an exciton in bilayer MoS2, Nature Nanotechnology (2020), DOI: 10.1038/s41565-020-0750-1]

www.unibas.ch

Firmeninformationen
© photonik.de 2020 - Alle Rechte vorbehalten