Forschung & Entwicklung

Rätsel um Compton-Effekt gelöst

Warum Elektronen aus einem Atom herausgeschlagen werden, wenn das Licht dafür eigentlich zu wenig Energie hat, hat jetzt ein internationales Team von Physikern herausgefunden.

Als der amerikanische Physiker Arthur Compton 1922 entdeckte, dass sich Lichtwellen wie Teilchen verhalten und in einem Stoßexperiment Elektronen aus Atomen herausschlagen können, war dies ein Meilenstein für die Quantenphysik. Für seine Experimente nutzte Compton sehr kurzwelliges Licht mit hoher Energie, demgegenüber er die Bindungsenergie des Elektrons an den Atomkern vernachlässigen konnte.

Bis heute wurden zahlreiche Experimente und Berechnungen zum Compton-Effekt gemacht, die immer wieder Asymmetrien zeigten und Rätsel aufwarfen. So wurde beobachtet, dass in bestimmten Experimenten scheinbar Energie verloren ging, wenn man die Bewegungsenergie der Elektronen und Photonen nach dem Zusammenstoß mit der Energie der Photonen vor dem Zusammenprall verglich. Da Energie nicht einfach verschwinden kann, wurde vermutet, dass sich in diesen Fällen der Einfluss des Atomkerns bei dem Photon-Elektron-Zusammenprall entgegen der vereinfachenden Annahme von Compton nicht vernachlässigen lässt.

Ein Team von Physikern um Professor Reinhard Dörner und Doktorand Max Kircher von der Goethe-Universität Frankfurt hat nun erstmals bei einem Stoßexperiment mit Photonen gleichzeitig die abgelenkten Elektronen und die Bewegung des Atomkerns beobachtet. Dazu bestrahlten sie Heliumatome mit Röntgenlicht der Röntgenstrahlungsquelle PETRA III am Hamburger Beschleunigerzentrum DESY. Die herausgelösten Elektronen und die geladenen Ionen detektierten sie in einem Coltrims-Reaktionsmikroskop, einer Apparatur, die Dörner mitentwickelt hat und die ultraschnelle Reaktionsprozesse von Atomen und Molekülen sichtbar machen kann.

Die Ergebnisse waren überraschend: Die Wissenschaftler beobachteten nämlich nicht nur, dass die Energie der stoßenden Photonen natürlich erhalten bleibt und zu einem Teil auf in eine Bewegung des Atomkerns (genauer: des Ions) überführt wird. Vielmehr wird zuweilen ein Elektron sogar aus dem Atom herausgeschlagen, wenn die Energie des stoßenden Photons eigentlich zu gering ist, um die Bindungskräfte des Elektrons an den Atomkern zu überwinden.

Insgesamt wurde nur in zwei Dritteln der Fälle das Elektron dorthin gestoßen, wo man es bei einem Billard-Stoßexperiment erwarten würde. In allen anderen Fällen wurde das Elektron quasi vom Kern reflektiert und teilweise sogar in die entgegengesetzte Richtung gelenkt.

Reinhard Dörner: „Wir konnten damit zeigen, dass das ganze System aus Photon, herausgeschlagenem Elektron und Ion nach quantenmechanischen Gesetzen schwingt. Unsere Experimente liefern damit einen neuen Ansatzpunkt zum experimentellen Testen quantenmechanischer Theorien des Compton-Effekts, der zum Beispiel in der Astrophysik oder der Röntgenphysik eine wichtige Rolle spielt.“

von mn

Originalveröffentlichung:

[M. Kircher et. al., Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold., Nat. Phys. (2020), DOI 10.1038/s41567-020-0880-2]

www.uni-frankfurt.de

Firmeninformationen
© photonik.de 2020 - Alle Rechte vorbehalten