Forschung & Entwicklung

Mit Quantentricks die Rätsel topologischer Materialien lösen

Mit Laserlicht können Atome in geometrischen Mustern festgehalten und neu angeordnet werden, um topologisch interessante Zustände zu finden.

Elektronen sind nicht bloß kleine Kügelchen, die sich wie ein Gummiball durch ein Material bewegen. Aus den Gesetzen der Quantenphysik ergibt sich, dass sich Elektronen wellenartig verteilen. Diese Wellen können in manchen Materialien eine geometrisch recht komplizierte Form annehmen. In sogenannten topologischen Materialien gibt es Elektronenzustände, die für technische Anwendungen sehr interessant sein können, allerdings ist es ausgesprochen schwierig, diese Materialien und die dazugehörigen Elektronenzustände zu identifizieren.

Von der TU Wien und mehreren Forschungsgruppen aus China wurde dazu nun eine neue Idee entwickelt und im Experiment umgesetzt. Eine Art Kristall aus Lichtwellen wird erzeugt, um Atome genau im richtigen geometrischen Muster festzuhalten. Diese Lichtkristalle, die auch bisher schon in unterschiedlicher Form für die Manipulation von Atomen verwendet wurden, kann man nun verwenden, um das System gezielt aus dem Gleichgewicht zu bringen: Man schaltet zwischen einfachen und komplizierten Zuständen hin und her, und das System verrät dabei, ob es topologisch interessante Zustände hat oder nicht.

Die Bedeutung der Topologie erkennt man leicht, wenn man zu viele Dinge in die Einkaufstasche gepackt hat: Das Kuchenstück ist leicht zerquetscht und hat plötzlich dieselbe Form wie die Banane. Kuchenstück und Banane haben dieselbe geometrische Grundstruktur, sie unterscheiden sich topologisch nicht voneinander. Ein Donut hingegen hat ein Loch in der Mitte – seine Topologie ist anders. Auch wenn er leicht gequetscht wird, kann man seine Form von der des Kuchenstücks immer noch problemlos unterscheiden.

„Mit Quantenzuständen ist es so ähnlich“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. „Quantenzustände können eine nichttriviale Topologie haben, die gegenüber Störungen sehr stabil ist, auch wenn sich bestimmte Details ändern. Das macht sie technisch so interessant – denn mit Störungen hat man in jedem Experiment und in jedem technischen Gerät immer zu kämpfen.“ Im Jahr 2016 wurde der Physik-Nobelpreis für Forschung an topologischen Materialeigenschaften vergeben, doch immer noch gilt es als äußerst schwierig, bei einem bestimmten Material überhaupt festzustellen, ob es topologisch interessante Zustände zulässt oder nicht.

Die Forscher der TU Wien beschäftigen sich mit Quantenzuständen, die sich nicht im Gleichgewicht befinden, die also gerade dabei sind, sich rasch zu verändern und konnten zeigen, dass man auf diese Weise hochinteressante Information bekommen kann.

Mithilfe von Lichtwellen können Atome an bestimmten Stellen festgehalten werden, sodass ein regelmäßiges Gitter aus Atomen entsteht, ähnlich wie in einem Kristall. Indem man das Licht verändert, kann man auch die Geometrie der Atomanordnung umschalten, und dabei untersuchen, wie sich die Elektronenzustände ändern.

„Bei dieser Veränderung wird schlagartig ein massives Ungleichgewicht erzeugt“, so Schmiedmayer. „Die Quantenzustände müssen sich neu anordnen und ein neues Gleichgewicht anstreben, ähnlich wie Kugeln, die man von einem Hügel nach unten rollen lässt, bis sie im Tal einen Gleichgewichtszustand finden. Und wir konnten nun klare Signaturen finden, durch die uns das System genau während dieses Ungleichgewichtsprozesses verrät, ob topologisch interessante Zustände zu finden sind oder nicht.“

Für die Forschung an topologischen Materialien ist das eine wichtige neue Erkenntnis. Man könnte sogar die künstlichen Lichtkristalle anpassen, um bestimmte Kristallstrukturen zu simulieren und dadurch neue topologische Materialien zu finden.

von mg

Originalveröffentlichung:

[Sun et al., Uncover Topology by Quantum Quench Dynamics, Phys. Rev. Lett. 121 (2018), DOI: 10.1103/PhysRevLett.121.250403]

www.tuwien.ac.at

© photonik.de 2019 - Alle Rechte vorbehalten