Forschung & Entwicklung

Lichtbasierter Computerchip funktioniert ähnlich wie das Gehirn

Die Entwicklung einer lichtgesteuerten Hardware könnte den Weg in Richtung hirnähnliche Computer ebnen, die um ein Vielfaches schneller Daten verarbeiten als traditionelle Verfahren.

Eine Technologie, die wie ein Gehirn funktioniert? In Zeiten von Künstlicher Intelligenz scheint das gar nicht so weit entfernt – zum Beispiel, wenn ein Handy Gesichter oder Sprachen erkennt. Bei komplexeren Anwendungen stoßen Computer jedoch nach wie vor schnell an ihre Grenzen, was unter anderem daran liegt, dass ihre Recheneinheiten und Datenspeicher traditionell voneinander getrennt sind. Die Folge: Alle Daten müssen hin- und hergeschickt werden. In diesem Punkt ist das Gehirn selbst den modernsten Computern viele Schritte voraus, denn es verarbeitet und speichert Informationen an derselben Stelle: an den Synapsen, Verbindungen von Nervenzellen, von denen es im Gehirn etwa 100 Billionen gibt. Einem internationalen Forscherteam der Universitäten Münster, Oxford und Exeter ist nun die Entwicklung einer Hardware gelungen, die den Weg in Richtung hirnähnliche Computer ebnen könnte: Die Nanowissenschaftler stellten einen Chip her, auf dem sich ein Netz aus künstlichen Neuronen erstreckt, das mit Licht arbeitet und das Verhalten von Nervenzellen im Gehirn nachahmen kann.

Auf den Mikrochips sind Lichtwellenleiter platziert, die Licht übertragen können. Die Lichtwellenleiter bestücken die Forscher mit sogenannten Phasenwechselmaterialien (engl. phase-change materials). Sie zeichnen sich dadurch aus, dass sie ihre Eigenschaften drastisch verändern – je nachdem, in welchem Phasenzustand (kristallin oder amorph) sie sich befinden. Die Phasenveränderung kann durch Licht ausgelöst werden, indem ein Laserstrahl das Material erhitzt. „Dadurch, dass das Material so stark reagiert und seine Eigenschaften drastisch verändert, eignet es sich gut, um Synapsen und die Erregungsübertragung zwischen zwei Neuronen nachzuahmen“, sagt Johannes Feldmann von der Westfälischen Wilhelms-Universität Münster (WWU).

In ihrer aktuellen Studie gelang es den Forschern zum ersten Mal, viele nanostrukturierte Phasenwechselmaterialien zu einem neurosynaptischen Netzwerk zusammenzuschließen. Die Nanowissenschaftler entwickelten einen Chip mit vier künstlichen Neuronen und insgesamt 60 Synapsen. Die in verschiedenen Schichten aufgebaute Struktur des Chips basierte auf der sogenannten Wellenlängenmultiplex-Technik – ein Verfahren, bei dem Licht auf unterschiedlichen Kanälen innerhalb eines optischen Nanoschaltkreises übertragen wird.

Um zu testen, inwiefern das System in der Lage ist, Muster zu erkennen, ‚fütterten‘ es die Forscher mit Informationen in Form von Lichtpulsen und wandten zwei verschiedene Algorithmen des Maschinellen Lernens an. Hierbei lernt ein künstliches System aus Beispielen und kann diese am Ende verallgemeinern. Bei den beiden eingesetzten Algorithmen – sowohl beim sogenannten überwachten als auch beim unüberwachten Lernen – war das künstliche Netzwerk am Ende in der Lage, anhand von vorgegebenen Lichtmustern ein jeweils gesuchtes Muster zu erkennen, unter anderem vier aufeinanderfolgende Buchstaben.

„Mit unserem System haben wir einen wichtigen Schritt in die Richtung einer Computer-Hardware gemacht, die sich ähnlich wie Neuronen und Synapsen im Gehirn verhält und die dazu in der Lage ist, reale Aufgaben zu bearbeiten“, sagt Professor Wolfram Pernice, Physiker an der WWU. „Indem wir mit Photonen anstelle von Elektronen arbeiten, können wir das bekannte Potenzial von optischen Technologien optimal ausschöpfen – nicht nur wie bisher, um Daten zu übertragen, sondern auch, um sie an einem Ort speichern und verarbeiten zu können“, betont auch Co-Autor Professor Harish Bhaskaran von der Oxford University.

Prinzipiell könnten mit einer solchen Hardware zum Beispiel Krebszellen automatisch identifiziert werden. Bis es zu solchen Anwendungen kommen kann, sind jedoch weitere Schritte nötig. So müssen die Forscher die Anzahl der künstlichen Neuronen und Synapsen erhöhen und die Tiefe der neuronalen Netzwerke vergrößern. Das kann zum Bespiel mit optischen Chips erfolgen, die in der Siliziumtechnologie hergestellt werden. Dieser Schritt soll im EU-Verbundprojekt ,Fun-COMP‘ erfolgen.

von mn

Originalveröffentlichung:

[J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice, All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569 (2019), DOI: 10.1038/s41586-019-1157-8]

www.uni-muenster.de

Firmeninformationen
© photonik.de 2019 - Alle Rechte vorbehalten