Forschung & Entwicklung

Gewellte Oberflächen für bessere Lichtkontrolle

Neuartige gewellte Beugungsgitter sollen die Effizienz der Lichtbeugung verbessern und extrem kompakte Bauteile wie im Chip intergrierte Mikrolaser oder ultradünne Kameralinsen ermöglichen.

Das Internet verdankt seine Leistungsfähigkeit unzähligen Lichtpulsen, mit denen über Glasfasern enorme Datenmengen rund um den Globus verschickt werden. Um diese Lichtpulse zu lenken und zu kontrollieren, kommen verschiedene Technologien zum Einsatz. Eine der ältesten und wichtigsten ist das Beugungsgitter, mit dem verschiedenfarbiges Licht in genau vorbestimmte Richtungen abgelenkt wird. Seit Jahrzehnten versuchen Wissenschaftler, das Design und die Herstellung von Beugungsgittern zu verbessern und die Gitter den anspruchsvollen Anwendungen von heute anzupassen. An der ETH Zürich haben Forscher um David Norris, Professor am Departement Maschinenbau und Verfahrenstechnik, eine neue Methode entwickelt, mit der effizientere und präzisere Beugungsgitter hergestellt werden können. Sie taten dies gemeinsam mit Kollegen, die jetzt an der Universität Utrecht arbeiten, und der Firma Heidelberg Instruments Nano, die als ETH-Spin-off SwissLitho gegründet wurde.

Beugungsgitter beruhen auf dem Prinzip der Interferenz. Wenn eine Lichtwelle auf eine gerillte Oberfläche fällt, so wird sie in viele kleinere Wellen aufgeteilt, die jeweils von einer Rille ausgehen. Wenn diese Wellen die Oberfläche verlassen, können sie sich entweder gegenseitig verstärken oder auslöschen, je nach ihrer Ausbreitungsrichtung und Wellenlänge.

Damit ein Beugungsgitter richtig funktioniert, müssen seine Rillen einen ähnlichen Abstand haben wie die Wellenlänge des Lichts, also in etwa einen Mikrometer. „Traditionell werden diese Rillen mit Herstellungsmethoden der Mikroelektronik in die Materialoberfläche geätzt“, sagt Nolan Lassaline, Doktorand in Norris’ Arbeitsgruppe. „Das bedeutet allerdings, dass die Rillen des Gitters treppenartig-kantige Seitenwände haben. Andererseits sagt uns die Physik, dass die Rillen glatt und gewellt sein sollten wie die gekräuselte Wasseroberfläche eines Sees.“ Mit herkömmlichen Verfahren hergestellte Rillen können daher nur eine grobe Näherung darstellen, was zur Folge hat, dass das Beugungsgitter Licht weniger effizient lenkt. Dank eines völlig neuen Ansatzes haben Norris und seine Mitarbeiter nun eine Lösung für dieses Problem gefunden.

Ihr Ansatz beruht auf der Technologie des Rastertunnelmikroskops. In einem solchen Mikroskop werden Materialoberflächen mittels einer extrem spitzen Sonde mit hoher Auflösung abgetastet. Die so entstandenen Bilder zeigen sogar einzelne Atome des Materials. Umgekehrt kann man die spitze Sonde aber auch benutzen, um ein Material damit zu bearbeiten und so gewellte Oberflächen herzustellen. Dazu heizen die Forscher die Spitze einer Rastersonde auf fast 1000 °C und drücken sie an bestimmten Stellen in eine Polymerschicht. Dadurch brechen die Moleküle des Polymers an diesen Stellen auseinander und verdampfen, wodurch die Oberfläche präzise geformt werden kann. Punkt für Punkt können die Wissenschaftler so beliebige Oberflächenprofile mit einer Auflösung von wenigen Nanometern in die Polymerschicht schreiben. Zum Schluss wird eine Silberschicht auf das Polymer aufgedampft und das Profil so auf ein optisches Material übertragen. Die Silberschicht kann dann vom Polymer abgelöst und als reflektierendes Beugungsgitter verwendet werden.

„Auf diese Weise können wir beliebig geformte Beugungsgitter mit einer Auflösung von wenigen Atomabständen in der Silberschicht herstellen“, sagt Norris. Anders als bei den traditionellen kantigen Rillen sind solche Gitter nun keine Näherungen mehr, sondern praktisch perfekt, und sie lassen sich so formen, dass die Interferenz der reflektierten Lichtwellen präzise kontrollierbare Muster bildet.

Solche perfekten Beugungsgitter eröffnen neue Möglichkeiten der Lichtkontrolle, die zu einer Reihe von Anwendungen führen. Die neue Technik könne beispielsweise dazu verwendet werden, winzige Beugungsgitter in integrierte Schaltkreise einzubauen, mit denen optische Signale für das Internet noch effizienter gesendet, empfangen und verteilt werden können. Generell könne man mit solchen Beugungsgittern stark miniaturisierte optische Geräte wie etwa Mikrolaser herstellen, die in einen Chip integriert sind. Diese miniaturisierten Gerätereichen von ultradünnen Kameralinsen bis hin zu kompakten Hologrammen mit schärferen Bildern. Sie werden voraussichtlich verschiedenste optischen Technologien beeinflussen, wie etwa futuristische Handykameras, Biosensoren oder autonomes maschinelles Sehen für Roboter und selbstfahrende Autos.

von mn

Originalveröffentlichung:

[Lassaline N, Brechbühler R, Vonk SJW, Ridderbeek K, Spieser M, Bisig S, le Feber B, Rabouw FT, Norris DJ, Optical Fourier surfaces. Nature (2020), DOI: 10.1038/s41586-020-2390-x]

www.ethz.ch

Firmeninformationen
© photonik.de 2020 - Alle Rechte vorbehalten