Forschung & Entwicklung

Exakte Genkontrolle durch Licht

Ein neuartiger optogenetischer Schalter erlaubt es, präzise zu untersuchen, wo und wann ein Protein in einer Zelle benötigt wird. Er könnte die Untersuchung dynamischer Prozesse in lebenden Zellen deutlich vorantreiben.

Bildlich gesprochen enthält jede menschliche Zelle in ihrem Kern eine Bibliothek mit Zehntausenden von Büchern, den Genen. Jedes dieser Bücher enthält die Bauanleitung eines Proteins. Wenn die Zelle ein bestimmtes Protein benötigt, wird von der Anleitung eine Abschrift hergestellt. Diese Kopien werden mRNAs genannt (RNA ist eine leicht abgewandelte Form der Erbsubstanz DNA).

Ein zellulärer Mechanismus sorgt dafür, dass die mRNA-Abschriften nach kurzer Zeit wieder zerstört werden. So ist sichergestellt, dass das Protein nur so lange produziert wird, wie es tatsächlich benötigt wird. Wissenschaftler sind schon vor einigen Jahrzehnten auf die Idee gekommen, den Schredder für eigene Zwecke zu nutzen: Indem sie bestimmten mRNAs ganz gezielt eine Markierung anheften, erreichen sie, dass die Abschriften gar nicht erst als Bauanleitung dienen, sondern direkt vernichtet werden – ein Prozess, der als RNA Silencing (RNA-Stummschaltung) bezeichnet wird. Der Zelle fehlt dann das entsprechende Protein. So lässt sich herausfinden, für welche Funktion es eigentlich zuständig wäre.

Bakterienmolekül als lichtabhängiger Schalter

Der Ansatz einer Gruppe der Universität Bonn und Bayreuth baut auf dieser Methode auf. Er ist allerdings ausgefeilter und erlaubt eine weitaus differenziertere Kontrolle über die Lebensdauer der mRNA-Kopien. „Wir nutzen ein bakterielles Molekül, um das Zerschreddern der mRNA-Abschriften mithilfe von Licht zu steuern“, erklärt Prof. Günter Mayer, der am Limes-Institut der Universität Bonn die Abteilung Chemische Biologie und Chemische Genetik leitet.

Das Bakterien-Molekül mit dem Kürzel PAL fungiert dabei als eine Art Schalter. Es ändert unter Einfluss von blauem Licht seine Gestalt. Dabei wird eine Tasche freigelegt, die an bestimmte Moleküle binden kann. „Wir haben eine riesige Bibliothek künstlich hergestellter kurzer RNA-Moleküle durchsucht, genannt Aptamere“, so Mayer. „Dabei sind wir auf ein Aptamer gestoßen, das sehr gut zu der Tasche im PAL-Molekül passt.“

Die Wissenschaftler haben dieses Aptamer nun an eine der molekularen Markierungen gekoppelt, die sich an mRNAs heften können und diese damit zum Abbau freigeben. „Wenn wir die Zelle mit blauem Licht bestrahlen, bindet PAL über das Aptamer an die Markierung und setzt sie damit außer Gefecht“, erläutert Mayers Mitarbeiter Sebastian Pilsl. „Die mRNA wird dann also nicht vernichtet, sondern in das entsprechende Protein übersetzt.“ Sobald die Forscher das blaue Licht ausschalten, lässt PAL die Markierung wieder los. Jetzt kann sie sich an die mRNA heften, die dann geschreddert wird.

Auf diese Weise können die Wissenschaftler künftig untersuchen, wo und wann ein Protein in einer Zelle genau benötigt wird – einfach, indem sie zu einem bestimmten Zeitpunkt einen Bereich der Zelle in blaues Licht tauchen und sich dann die Konsequenzen ansehen. In der aktuellen Studie haben sie das beispielsweise probeweise für Proteine umgesetzt, die bei der Regulation des Zellzyklus und der Zellteilung eine wichtige Rolle spielen. Die Verbindung aus Aptamer und Abbaumarkierung wird dabei auf gentechnischem Wege in die Zelle eingeschleust. Diese erzeugt das lichtabhängige Abbausignal danach also selbst; es muss nicht von außen zugeführt werden.

Genabschriften gezielt ausschalten

Das Aptamer lässt sich mit beliebigen Markierungen kombinieren, von denen jede wiederum als Schredder-Signal für eine bestimmte mRNA dient. „Mit dieser Methode lässt sich daher praktisch jedes mRNA-Molekül in der Zelle kontrolliert ausschalten“, betont Prof. Andreas Möglich von der Universität Bayreuth. In der jetzt veröffentlichten Pilotstudie funktionierte das Ganze ebenso einfach wie zuverlässig. Die Wissenschaftler sehen in ihrer Methode daher großes Potenzial für die Erforschung dynamischer Prozesse in lebenden Zellen und Organismen.

von mg

Originalpublikation:
[S. Pilsl, C. Morgan, M. Choukeife, A. Möglich, G. Mayer, Optoribogenetic control of regulatory RNA molecules, Nat. Commun. 11 (2020), DOI:10.1038/s41467-020-18673-5]

www.uni-bonn.de

www.uni-bayreuth.de

Firmeninformationen
© photonik.de 2020 - Alle Rechte vorbehalten