Forschung & Entwicklung

Chemische Reaktionen im Licht ultrakurzer Röntgenpulse

16 ringförmig angeordnete Detektoren und ein zirkular polarisierter Laserstrahl sollen in Zukunft einzelne Reaktionsstellen in komplizierteren Molekülen ansprechen und in Echtzeit verfolgen können.

Freie-Elektronen-Laser (FEL) erzeugen extrem kurze und intensive Röntgenblitze. Mit diesen können Forscher Strukturen vom Durchmesser eines Wasserstoffatoms erkennen. Biomoleküle lassen sich so in höchster Auflösung abbilden und völlig neue Einblicke in den Nanokosmos der Natur gewinnen. Schießt man zwei solcher Blitze schnell hintereinander auf eine Probe, so erhält man sogar Informationen über die strukturellen Veränderungen während einer Reaktion: Ein erster Puls löst die Reaktion aus, mit einem zweiten Laserstrahl wird vermessen, wie die Struktur sich durch die Reaktion verändert. Der zeitliche Verlauf der Intensität und die Länge der Röntgenblitze variieren jedoch von Blitz zu Blitz. Das Bild bleibt unscharf.

Ein von Physikern der Technischen Universität München (TUM) angeführtes internationales Team hat nun eine Lösung gefunden: In seinem Experiment benutzte das Forschungsteam Röntgenblitze der Linac Coherent Light Source in Menlo Park (USA). In der Probenkammer schlagen sie aus Neonatomen Elektronen heraus. Treffen diese nun auf einen Infrarotlichtimpuls, so werden sie von dessen elektrischem Feld beschleunigt oder abgebremst, je nachdem welche Feldstärke der Lichtpuls gerade hat, wenn das Elektron erzeugt wird. Die zirkulare Polarisierung des Infrarotpulses gibt dem Elektron nun zusätzlich noch eine Richtung. Mit einem Ring aus 16 Detektoren sind daher Energie und Dauer des ursprünglichen Röntgenpulses wie auf dem Zifferblatt einer Uhr mit Attosekundengenauigkeit bestimmbar.

Die Information sowohl über die Energieverteilung als auch über die zeitliche Pulsstruktur soll es künftig erlauben, ganz spezifisch einzelne Reaktionsstellen in komplizierteren Molekülen anzusprechen und deren Einfluss auf den Verlauf der Veränderungen während der Reaktion in Echtzeit zu verfolgen.

Die Technik könne auch dazu verwendet werden, die Entwicklung der FELs selbst voranzutreiben, sagt Wolfram Helml, Leiter des Forschungsteams. „Wir erhalten eine sofortige Rückmeldung über die Pulsstruktur während der FEL durchgestimmt wird. So können wir gezielt Röntgenblitze mit ganz bestimmter Dauer oder energetischen Eigenschaften erzeugen.“

Von besonderem Interesse ist die neue Technik auch für Forschungsarbeiten am neuen European X-ray Free-Electron Laser (European XFEL) in Hamburg, da sie im Unterschied zu anderen Techniken, auch für Messungen mit der hohen Wiederholrate genutzt werden kann, die diese hochmoderne Anlage zur Verfügung stellt. Auch im Rahmen des gerade im Aufbau befindlichen Centre for Advanced Laser Applications (CALA) in Garching bei München, wo mithilfe laserbasierter Röntgentechnik Methoden zur Früherkennung und Therapie chronischer Krankheiten entwickelt werden sollen, könnte diese Technologie eingesetzt werden.

Originalveröffentlichung:

[N. Hartmann et al., Attosecond time–energy structure of X-ray free electron laser pulses, Nat. Photonics 12 (2018), DOI: 10.1038/s41566-018-0107-6]

von mn

www.tum.de

© photonik.de 2018 - Alle Rechte vorbehalten